Luftkissenbahn

Von Sebastian Reinert, PTB Braunschweig

luftkissenbahn_1_225x320
Gemeinschaftlich wird der Versuch vorbereitet

Heute haben wir uns mit der Luftkissenbahn beschäftigt. Zuerst kommt vor dem Experimentieren wie immer die Theorie:

Mithilfe der Luftkissenbahn kann man Geschwindigkeit und Beschleunigung bestimmen. Dies geschieht mithilfe eines Schlittens, der auf der Luftkissenbahn „schwebt“. Durch viele kleine Öffnungen in der Bahn strömt eingeblasene Luft und drückt somit den Schlitten nach oben, sodass kaum noch Reibung vorhanden ist (Vergleich: Airhockey-Tisch und Luftkissenboote).

Zuerst wollen wir die gleichförmige Bewegung des Schlittens bestimmen:

Dazu haben wir zwei Lichtschranken in einem bekannten Abstand positioniert und an den Digitalzähler angeschlossen. Jetzt stoßen wir den Schlitten (noch vor der Lichtschranke) leicht an und messen mit dem Digitalzähler die Zeit, die der Schlitten benötigt um die Strecke zu überwinden. Da er die gesamte Strecke mit gleich bleibender Geschwindigkeit auf der Luftkissenbahn „schwebt“, kann man nun aus den Werten Weg und Zeit die Geschwindigkeit berechnen.

In unserem Versuch hat der Schlitten z. B. 8,46 Sekunden für die 1,3 m Strecke benötigt. Daraus berechnen wir mit ein paar kleinen Formeln seine Geschwindigkeit.

Ergebnis: 0,54 km/h (Kilometer pro Stunde).

luftkissenbahn_2_300x169
Ergründet: Geschwindigkeit und Beschleunigung

Zur Bestimmung einer gleichförmig beschleunigten Bewegung haben wir unseren Aufbau etwas erweitert: Über zwei Umlenkrollen ist der Schlitten durch ein Band mit einem Gewicht verbunden. Das Gewicht beschleunigt durch seinen freien Fall den Schlitten gleichförmig. Der Schlitten wird durch einen Elektromagneten am Startpunkt gehalten, bis wir ihn, durch Unterbrechen des Stromkreises, losfahren lassen.

Bei diesem Versuch lässt sich beobachten, dass der Schlitten, mit zunehmender Strecke, immer schneller wird.

Farbspielereien

Von Mona Herdin, PTB

chromatographie_1_225
Farbstoffe für die Chromatographie auswählen

Wie viele Farben hat ein schwarzer Fineliner-Stift? Viele von euch fragen sich jetzt bestimmt, was diese Frage soll. Wir wollen es euch erklären, denn die Farbe Schwarz setzt sich aus mehreren Farben zusammen. Wie viele es genau sind, haben wir herausgefunden:

Wir haben unser Vorwissen genutzt und mit Filterpapier, Fineliner und Wasser (Laufmittel) angefangen: Einen schwarzen Punkt auf das Filterpapier gemalt, Wasser darauf getropft und geguckt, was passiert. Der schwarze Punkt zerlief in einen heller werdenden Blauton mit einem hell-violetten Kranz. Aber wir wären nicht Physik-Azubis geworden, wenn wir euch nur die einfachen Schulversuche präsentieren würden. Wir haben unser Chromatographie-Experiment-Set rausgeholt, um mit verschiedenen Laufmitteln wie Toluol, Natriumcitratlösung oder Chloroform-Aceton ein noch besseres Ergebnis zu erzielen. Chloroform-Aceton hat schließlich unsere Frage beantwortet – seht selbst: Aus ursprünglich nur zwei erhaltenen Farben (blau und violett) sind gelb, blau, pink und rot geworden.

chromatographie_2_200
Pflanzenfarbstoffe aus einer Blüte gelöst

Wir hatten Lunte gerochen und überlegt, ob es nicht möglich wäre, ganz schnell und einfach Pflanzenfarbstoffe herauszufiltern und mittels der Chromatographie diese dann in die einzelnen Farbstoffe zu filtern. Diese Idee führte uns hinaus ins Grüne: Alles Farbige, was uns in die Finger kam, wurde mitgenommen und im Mörser gnadenlos zermalmt. Die Überreste haben wir in das Filterpapier gelegt und mit Ethanol getränkt. Heraus kamen farbige Lösungen – wir hatten die Pflanzenfarbstoffe also erfolgreich herausgetrennt – und auf dem Filterpapier gut zu erkennen, welche Farbbestandteile in unserer Lösung enthalten waren.

Und nun die Theorie:

Die Chromatographie lässt sich mit einem reißenden Fluss vergleichen: Das Flusswasser entspricht dem Laufmittel, das Flussbett dem Filterpapier und das Treibgut im Fluss stellt die einzelnen Farbbestandteile dar. Je nachdem wie diese drei Parameter beschaffen sind, sinkt das Treibgut im Fluss früher oder später auf den Grund.

Genauso ist es auch bei unserem Fineliner: Das Laufmittel zieht die Farbbestandteile mit sich, und abhängig vom Laufmittel, Filterpapier oder dem Aufbau der jeweiligen Farbbestandteile werden diese unterschiedlich weit mitgenommen.

3 . . . 2 . . . 1 . . . Woosh!

Von Yvonne Bruchmann, Fraunhofer IST

rakete_3_225
Die Abschußrampe wird startklar gemacht.

Heute haben wir uns alle gemeinsam auf dem „PTB-Raketen-Test-Gelände“ versammelt, um die ersten Prototypen der Raketen-Marke „Eigenbau“ auf die Probe zu stellen.

Kurz noch die Messstrecke präparieren und schon kann es losgehen.  Die PTB-ler füllen ihren Wassertank als erstes auf und pumpen Luft hinein, um einen Überdruck im Tank aufzubauen.

Jetzt heißt es: 3 . . . 2 . . . 1 . . . Wooosh. Das Wasser schießt aus dem Tank hinaus und treibt so die Rakete an, denn die ausgestoßene Wassermasse sorgt für den erforderlichen Rückstoß.

30 Meter weit ist die Rakete geflogen, ob das noch zu toppen ist? Wir probieren es aus und variieren den Druck und das Wasservolumen. Und tatsächlich fliegt die Rakete bei mehr Volumen immer noch ein Stück weiter. Doch nicht grenzenlos, denn es gibt einen Punkt, an dem das Gewicht des Wassers die Rakete wieder hinunter zieht.

rakete_1_300
Auf idealer Fluglinie auf über 30 m Flugweite!

Die TU-ler haben ebenfalls einen Prototypen und als kleines Highlight eine Startrampe konzipiert, welche den Flug der Rakete nochmals verlängern soll. Ausbilder Thilo Lampe erklärt uns dazu, dass es einen optimalen Winkel der Startrampe gibt und demonstriert uns dazu den Effekt. 

Vor lauter Ehrgeiz und Drang nach neuen wissenschaftlichen Erkenntnissen entsteht ein Wettstreit zwischen den drei Institutionen: „Wer schafft es bis Mai 2012 eine optimierte Rakete inklusive Startrampe zu modellieren und damit die längste Flugweite zu erzielen?!“

Es wird kurzerhand ein Regelwerk aufgestellt. Inzwischen laufen die Forschungen innerhalb der Institutionen auf Hochtouren. Wie es wohl ausgehen wird und welche Tricks und Ideen zur Hilfe gezogen werden, sehen Sie im Mai.

– FORTSETZUNG FOLGT! –

Phaenomenal

Von Yvonne Bruchmann, Fraunhofer IST

Lange genug im Labor gestanden. Heute geht es raus in die Nachbarstadt Wolfsburg, für einen Besuch im phaeno. Das Besondere daran: Wir fahren alle zusammen. Wir – das sind die Azubis der PTB, der TU Braunschweig und des Fraunhofer Instituts IST für Schicht- und Oberflächentechnik.

Spiegel in die Unendlichkeit

Dort angekommen erkunden wir in kleinen Gruppen die Experimentierlandschaft und haben einen Megaspaß. Im Bereich der Optik sind die verzerrten Spiegelbilder eine witzige Attraktion. Je nach Wölbung des Spiegels sehen wir groß und schmal oder klein und dick aus. Auch die scheinbar unendlichen Spiegelungen von Gegenständen begeistern auf ihre Weise, wie die Telefonzelle, die Innen an allen Seiten mit Spiegeln versehen ist.

An der nächsten Ecke heißt es jetzt: „ACHTUNG! Brillen absetzen!!!“ Wir laufen mit fullspeed gegen eine Wand und dabei wird ausgerechnet, welchen Aufprall-Faktor wir in Relation zu unserem Körpergewicht haben. Da entsteht ein richtiger Wettstreit.

Der Robo sprach „Jedes Ding hat seine Zeit“ , W. Shakespeare

Nachdem wir ausgepowert weiter ziehen, kommen wir an einem Feuertornado vorbei. Ganz schön groß und spektakulär. So etwas sieht man nicht alle Tage.

Aber auch der freundliche Roboter, der uns mit Shakespeare-Zitaten begrüßt, sowie die Igel, die aus Eisenspäne bestehen und durch Magnetfelder zum Tanzen gebracht werden, sind ein Hingucker.

phaenoinfra_300
Wärmebildaufnahme – Wer hat am meisten Hitze?

Nach einem langen Tag, der aus Spaß und Action bestand, fahren wir mit dem Zug wieder nach Hause und schwärmen gemeinsam während der Fahrt über das Erlebte und beschließen, so etwas sehr bald zu wiederholen.

Ladungen springen lassen

Von Benjamin Riehn, PTB Braunschweig

bandgenerator_1_300
Dem Plastikbüschel stehen die „Haare“ zu Berge

Heute steht bei uns der neue Bandgenerator auf dem Plan. Zuerst haben wir uns mit der Theorie beschäftigt:

Aus einem unteren Kupferkamm werden positive Ladungen herausgelöst und auf das laufende Gummiband übertragen. Dieses Band transportiert die Ladungen zu einem weiteren Kupferkamm, welcher die Ladungen auf die Hohlkugel überträgt. Auf der Haube entsteht ein positiver Ladungsüberschuss. Hält man nun eine zweite Kugel in die Nähe der Haube, so kann man beobachten, dass die Ladungen auf die kleine Kugel überspringen, indem man Blitze sieht und ein “Knacken“ hört. Somit ist Ladung auf die kleine Kugel übergegangen.

Nice to know:

Unser Bandgenerator schafft 175000 V, diese sind aber ungefährlich, da nur ein Strom von weniger als 10 Mikroampere fließt.

Genug der Theorie – jetzt wird experimentiert!

bandgenerator_2_225
Schicke Blitze und „knackende“ Ladungen

In dem ersten Versuch verwenden wir ein Büschel aus Plastikstreifen und stecken es auf die Hohlkugel. Mal sehen was passiert…

Die Plastikstreifen werden ebenso wie die Hohlkugel positiv aufgeladen. Da sich gleichnamige Ladungen abstoßen, richten sich die Plastikstreifen auf.

Anstatt des Plastikbüschels kann man sich auch selbst als Versuchskaninchen betätigen und die Hohlkugel anfassen. Dann stehen einem sprichwörtlich die Haare zu Berge.

Aber immer dran denken: Vor dem Berühren der Haube oder leitender Teile, zuerst erden, sonst „knallt´s“!